Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.042
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(10): e2111537119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238643

RESUMO

Ischemia reperfusion injury represents a common pathological condition that is triggered by the release of endogenous ligands. While neutrophils are known to play a critical role in its pathogenesis, the tissue-specific spatiotemporal regulation of ischemia-reperfusion injury is not understood. Here, using oxidative lipidomics and intravital imaging of transplanted mouse lungs that are subjected to severe ischemia reperfusion injury, we discovered that necroptosis, a nonapoptotic form of cell death, triggers the recruitment of neutrophils. During the initial stages of inflammation, neutrophils traffic predominantly to subpleural vessels, where their aggregation is directed by chemoattractants produced by nonclassical monocytes that are spatially restricted in this vascular compartment. Subsequent neutrophilic disruption of capillaries resulting in vascular leakage is associated with impaired graft function. We found that TLR4 signaling in vascular endothelial cells and downstream NADPH oxidase 4 expression mediate the arrest of neutrophils, a step upstream of their extravasation. Neutrophil extracellular traps formed in injured lungs and their disruption with DNase prevented vascular leakage and ameliorated primary graft dysfunction. Thus, we have uncovered mechanisms that regulate the initial recruitment of neutrophils to injured lungs, which result in selective damage to subpleural pulmonary vessels and primary graft dysfunction. Our findings could lead to the development of new therapeutics that protect lungs from ischemia reperfusion injury.


Assuntos
Endotélio Vascular/metabolismo , Pulmão/metabolismo , Necroptose , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Endotélio Vascular/lesões , Humanos , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104805

RESUMO

Sortilin has been positively correlated with vascular disorders in humans. No study has yet evaluated the possible direct effect of sortilin on vascular function. We used pharmacological and genetic approaches coupled with study of murine and human samples to unravel the mechanisms recruited by sortilin in the vascular system. Sortilin induced endothelial dysfunction of mesenteric arteries through NADPH oxidase 2 (NOX2) isoform activation, dysfunction that was prevented by knockdown of acid sphingomyelinase (ASMase) or sphingosine kinase 1. In vivo, recombinant sortilin administration induced arterial hypertension in WT mice. In contrast, genetic deletion of sphingosine-1-phosphate receptor 3 (S1P3) and gp91phox/NOX2 resulted in preservation of endothelial function and blood pressure homeostasis after 14 days of systemic sortilin administration. Translating these research findings into the clinical setting, we detected elevated sortilin levels in hypertensive patients with endothelial dysfunction. Furthermore, in a population-based cohort of 270 subjects, we showed increased plasma ASMase activity and increased plasma levels of sortilin, S1P, and soluble NOX2-derived peptide (sNOX2-dp) in hypertensive subjects, and the increase was more pronounced in hypertensive subjects with uncontrolled blood pressure. Our studies reveal what we believe is a previously unrecognized role of sortilin in the impairment of vascular function and in blood pressure homeostasis and suggest the potential of sortilin and its mediators as biomarkers for the prediction of vascular dysfunction and high blood pressure.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo , Esfingosina/análogos & derivados , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Lisofosfolipídeos/genética , Camundongos , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingosina/genética , Esfingosina/metabolismo
3.
Bioengineered ; 13(2): 4100-4111, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35098884

RESUMO

Diabetes Mellitus (DM) is a significant risk factor for cardiovascular disease (CVD), which is leading cause of deaths in DM patients. However, there are limited effective medical therapies for diabetic CVD. Vascular endothelial injury caused by DM is a critical risk factor for diabetic CVD. Previous study has indicated that Angiotensin-(1-7) (Ang-(1-7)) may prevent diabetic CVD, whereas it is not clear that Ang-(1-7) whether attenuates diabetic CVD through suppressing vascular endothelial injury. In this study, we found that Ang-(1-7) alleviated high glucose (HG)-induced endothelial injury in bEnd3 cells. Moreover, Ang-(1-7) ameliorated HG-induced endothelial injury through downregulating chloride channel 3 (CIC-3) via Mas receptor. Furthermore, HG-induced CIC-3 enhanced reactive oxygen species (ROS) and cytokine production and reduced the level of nitric oxide (NO), while Ang-(1-7) preserved the impact of HG-induced CIC-3 on productions of ROS, cytokine and NO through inhibiting CIC-3 via Mas receptor. Summarily, the present study revealed that Ang-(1-7) alleviated HG-induced vascular endothelial injury through the inhibition of CIC-3, suggested that Ang-(1-7) may preserve diabetic CVD through suppressing HG-induced vascular endothelial injury.


Assuntos
Angiotensina I/farmacologia , Canais de Cloreto , Endotélio Vascular , Glucose/efeitos adversos , Fragmentos de Peptídeos/farmacologia , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Diabetes Mellitus , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/lesões , Camundongos
4.
Microvasc Res ; 140: 104310, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979154

RESUMO

Evidence suggests severe coronavirus disease-19 (COVID-19) infection is characterised by pulmonary and systemic microvasculature dysfunction, specifically, acute endothelial injury, hypercoagulation and increased capillary permeability. Diabetes, which is also characterised by vascular injury in itself, confers an increased risk of adverse COVID-19 outcomes. It has been suggested that pre-existing endothelial dysfunction and microvascular disease in diabetes will exacerbate the vascular insults associated with COVID-19 and thus lead to increased severity of COVID-19 infection. In this article, we evaluate the current evidence exploring the impact of microvascular complications, in the form of diabetic retinopathy and nephropathy, in individuals with COVID-19 and diabetes. Future insights gained from exploring the microvascular injury patterns and clinical outcomes may come to influence care delivery algorithms for either of these conditions.


Assuntos
COVID-19/fisiopatologia , Angiopatias Diabéticas/fisiopatologia , Endotélio Vascular/patologia , Microcirculação , Pandemias , SARS-CoV-2 , Trombofilia/etiologia , Albuminúria/etiologia , COVID-19/complicações , Permeabilidade Capilar , Atenção à Saúde , Angiopatias Diabéticas/complicações , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/fisiopatologia , Retinopatia Diabética/complicações , Retinopatia Diabética/fisiopatologia , Endotélio Vascular/lesões , Humanos , Obesidade/complicações , Obesidade/fisiopatologia , Circulação Pulmonar , Edema Pulmonar/etiologia , Edema Pulmonar/fisiopatologia , Índice de Gravidade de Doença , Trombofilia/fisiopatologia , Resultado do Tratamento
5.
Exp Biol Med (Maywood) ; 247(2): 174-183, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601891

RESUMO

Hyperuricemia, which contributes to vascular endothelial damage, plays a key role in multiple cardiovascular diseases. This study was designed to investigate whether C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3) has a protective effect on endothelial damage induced by uric acid and its underlying mechanisms. Animal models of hyperuricemia were established in Sprague-Dawley (SD) rats through the consumption of 10% fructose water for 12 weeks. Then, the rats were given a single injection of Ad-CTRP3 or Ad-GFP. The animal experiments were ended two weeks later. In vitro, human umbilical vein endothelial cells (HUVECs) were first infected with Ad-CTRP3 or Ad-GFP. Then, the cells were stimulated with 10 mg/dL uric acid for 48 h after pretreatment with or without a Toll-like receptor 4 (TLR4)-specific inhibitor. Hyperuricemic rats showed disorganized intimal structures, increased endothelial apoptosis rates, increased inflammatory responses and oxidative stress, which were accompanied by reduced CTRP3 and elevated TLR4 protein levels in the thoracic aorta. In contrast, CTRP3 overexpression decreased TLR4 protein levels and ameliorated inflammatory responses and oxidative stress, thereby improving the morphology and apoptosis of the aortic endothelium in rats with hyperuricemia. Similarly, CTRP3 overexpression decreased TLR4-mediated inflammation, reduced oxidative stress, and rescued endothelial damage induced by uric acid in HUVECs. In conclusion, CTRP3 ameliorates uric acid-induced inflammation and oxidative stress, which in turn protects against endothelial injury, possibly by inhibiting TLR4-mediated inflammation and downregulating oxidative stress.


Assuntos
Adipocinas/metabolismo , Apoptose , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Estresse Oxidativo , Ácido Úrico/metabolismo , Animais , Humanos , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo
6.
Biomolecules ; 11(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572581

RESUMO

Systemic vascular damage with micro/macro-thrombosis is a typical feature of severe COVID-19. However, the pathogenesis of this damage and its predictive biomarkers remain poorly defined. For this reason, in this study, serum monocyte chemotactic protein (MCP)-2 and P- and E-selectin levels were analyzed in 204 patients with COVID-19. Serum MCP-2 and P-selectin were significantly higher in hospitalized patients compared with asymptomatic patients. Furthermore, MCP-2 increased with the WHO stage in hospitalized patients. After 1 week of hospitalization, MCP-2 levels were significantly reduced, while P-selectin increased in patients in WHO stage 3 and decreased in patients in WHO stages 5-7. Serum E-selectin was not significantly different between asymptomatic and hospitalized patients. The lower MCP-2 levels after 1 week suggest that endothelial damage triggered by monocytes occurs early in COVID-19 disease progression. MCP-2 may also predict COVID-19 severity. The increase in P-selectin levels, which further increased in mild patients and reduced in severe patients after 1 week of hospitalization, suggests that the inactive form of the protein produced by the cleavage of the active protein from the platelet membrane is present. This may be used to identify a subset of patients that would benefit from targeted therapies. The unchanged levels of E-selectin in these patients suggest that endothelial damage is less relevant.


Assuntos
COVID-19 , Quimiocina CCL8/sangue , Selectina E/sangue , Endotélio Vascular , Selectina-P/sangue , SARS-CoV-2/metabolismo , Adulto , Idoso , COVID-19/sangue , COVID-19/patologia , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/patologia
7.
Int J Lab Hematol ; 43 Suppl 1: 29-35, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34288441

RESUMO

Vascular endothelial injury is a hallmark of acute infection at both the microvascular and macrovascular levels. The hallmark of SARS-CoV-2 infection is the current COVID-19 clinical sequelae of the pathophysiologic responses of hypercoagulability and thromboinflammation associated with acute infection. The acute lung injury that initially occurs in COVID-19 results from vascular and endothelial damage from viral injury and pathophysiologic responses that produce the COVID-19-associated coagulopathy. Clinicians should continue to focus on the vascular endothelial injury that occurs and evaluate potential therapeutic interventions that may benefit those with new infections during the current pandemic as they may also be of benefit for future pathogens that generate similar thromboinflammatory responses. The current Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) studies are important projects that will further define our management strategies. At the time of writing this report, two mRNA vaccines are now being distributed and will hopefully have a major impact on slowing the global spread and subsequent thromboinflammatory injury we see clinically in critically ill patients.


Assuntos
COVID-19/complicações , Pandemias , SARS-CoV-2 , Trombofilia/etiologia , Vasculite/etiologia , Anticoagulantes/uso terapêutico , COVID-19/sangue , COVID-19/imunologia , Criança , Coagulação Intravascular Disseminada/etiologia , Endotélio Vascular/lesões , Endotélio Vascular/fisiopatologia , Feminino , Fibrinólise , Previsões , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Gravidez , Complicações Infecciosas na Gravidez/sangue , Tromboembolia/etiologia , Tromboembolia/prevenção & controle
8.
Cells ; 10(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199975

RESUMO

Periprocedural myocardial injury and myocardial infarction (MI) are not infrequent complications of percutaneous coronary intervention (PCI) and are associated with greater short- and long-term mortality. There is an abundance of preclinical and observational data demonstrating that high levels of pre-, intra- and post-procedural inflammation are associated with a higher incidence of periprocedural myonecrosis as well as future ischaemic events, heart failure hospitalisations and cardiac-related mortality. Beyond inflammation associated with the underlying coronary pathology, PCI itself elicits an acute inflammatory response. PCI-induced inflammation is driven by a combination of direct endothelial damage, liberation of intra-plaque proinflammatory debris and reperfusion injury. Therefore, anti-inflammatory medications, such as colchicine, may provide a novel means of improving PCI outcomes in both the short- and long-term. This review summarises periprocedural MI epidemiology and pathophysiology, evaluates the prognostic value of pre-, intra- and post-procedural inflammation, dissects the mechanisms involved in the acute inflammatory response to PCI and discusses the potential for periprocedural anti-inflammatory treatment.


Assuntos
Endotélio Vascular , Infarto do Miocárdio , Intervenção Coronária Percutânea/efeitos adversos , Complicações Pós-Operatórias , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Humanos , Incidência , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/mortalidade , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/cirurgia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/mortalidade , Prognóstico
9.
Diab Vasc Dis Res ; 18(3): 14791641211027324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34190643

RESUMO

BACKGROUND: Insulin exerts vasculoprotective effects on endothelial cells (ECs) and growth-promoting effects on vascular smooth muscle cells (SMCs) in vitro, and suppresses neointimal growth in vivo. Here we determined the role of ECs and SMCs in the effect of insulin on neointimal growth. METHODS: Mice with transgene CreERT2 under the control of EC-specific Tie2 (Tie2-Cre) or SMC-specific smooth muscle myosin heavy chain promoter/enhancer (SMMHC-Cre) or littermate controls were crossbred with mice carrying a loxP-flanked insulin receptor (IR) gene. After CreERT2-loxP-mediated recombination was induced by tamoxifen injection, mice received insulin pellet or sham (control) implantation, and underwent femoral artery wire injury. Femoral arteries were collected for morphological analysis 28 days after wire injury. RESULTS: Tamoxifen-treated Tie2-Cre+ mice showed lower IR expression in ECs, but not in SMCs, than Tie2-Cre- mice. Insulin treatment reduced neointimal area after arterial injury in Tie2-Cre- mice, but had no effect in Tie2-Cre+ mice. Tamoxifen-treated SMMHC-Cre+ mice showed lower IR expression in SMCs, but not in ECs, than SMMHC-Cre- mice. Insulin treatment reduced neointimal area in SMMHC-Cre- mice, whereas unexpectedly, it failed to inhibit neointima formation in SMMHC-Cre+ mice. CONCLUSION: Insulin action in both ECs and SMCs is required for the "anti-restenotic" effect of insulin in vivo.


Assuntos
Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima , Receptor de Insulina/agonistas , Lesões do Sistema Vascular/tratamento farmacológico , Animais , Modelos Animais de Doenças , Implantes de Medicamento , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Masculino , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
10.
J Neuroinflammation ; 18(1): 134, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34126995

RESUMO

Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide; more than 10 million people are hospitalized for TBI every year around the globe. While the primary injury remains unavoidable and not accessible to treatment, the secondary injury which includes oxidative stress, inflammation, excitotoxicity, but also complicating coagulation abnormalities, is potentially avoidable and profoundly affects the therapeutic process and prognosis of TBI patients. The endothelial glycocalyx, the first line of defense against endothelial injury, plays a vital role in maintaining the delicate balance between blood coagulation and anticoagulation. However, this component is highly vulnerable to damage and also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual, and computational investigation of this vascular component. In this review, we summarize the current knowledge on (i) structure and function of the endothelial glycocalyx, (ii) its potential role in the development of TBI associated coagulopathy, and (iii) the options available at present for detecting and protecting the endothelial glycocalyx.


Assuntos
Transtornos da Coagulação Sanguínea , Lesões Encefálicas Traumáticas , Endotélio Vascular , Glicocálix , Animais , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/fisiopatologia , Transtornos da Coagulação Sanguínea/terapia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/prevenção & controle , Lesões Encefálicas Traumáticas/terapia , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Glicocálix/metabolismo , Glicocálix/patologia , Glicocálix/fisiologia , Humanos , Inflamação , Estresse Oxidativo
11.
Am J Hypertens ; 34(10): 1116-1124, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34037692

RESUMO

BACKGROUND: To investigate the protective effects of the novel peptide antiendothelial dysfunction peptide in preeclampsia (AEDPPE) on tumor necrosis factor α (TNFα)- and lipopolysaccharide (LPS)-induced injury in the vascular endothelium in preeclampsia. METHODS: The effects of AEDPPE on TNFα-induced vascular endothelial injury were assessed by enzyme-linked immunosorbent assay, quantitative real-time PCR, mitochondrial membrane potential assay, Cell Counting Kit-8 assay, THP-1 monocyte-human umbilical vein endothelial cell (HUVEC) adhesion assay, endothelial tube-forming assay, transcriptomic analysis, preeclamptic symptom analysis, and histological analysis in preeclampsia-like rat models induced by LPS. RESULTS: AEDPPE alleviated the upregulation of antiangiogenic factors including soluble fms-like tyrosine kinase-1, endothelin-1, and tissue plasminogen activator and attenuated the reduction in mitochondrial potential induced by TNFα in HUVECs. In addition, AEDPPE treatment counteracted the decrease in tube formation and decreased the numbers of THP-1 monocytes attached to HUVECs caused by TNFα. Mechanistically, cytokine-cytokine receptor interactions enriched many genes and the TNF signaling pathway may be involved in this phenomenon. Moreover, cotreatment with LPS and AEDPPE significantly reversed the preeclampsia-like phenotype including hypertension and proteinuria and improved the functions of the kidney and placenta. CONCLUSIONS: AEDPPE effectively ameliorated the vascular endothelial injury induced by TNFα and LPS in preeclampsia. We suggest that AEDPPE may be a novel therapeutic candidate for preeclampsia treatment. These findings demonstrate that AEDPPE may play an effective role in ameliorating vascular endothelial dysfunction and be a potential therapeutic agent for preeclampsia.


Assuntos
Peptídeos , Pré-Eclâmpsia , Animais , Endotélio Vascular/lesões , Feminino , Humanos , Lipopolissacarídeos/toxicidade , Peptídeos/uso terapêutico , Pré-Eclâmpsia/tratamento farmacológico , Gravidez , Ratos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/toxicidade
12.
Am J Pathol ; 191(8): 1374-1384, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34033751

RESUMO

Patients with coronavirus disease 2019 (COVID-19) who are critically ill develop vascular complications characterized by thrombosis of small, medium, and large vessels. Dysfunction of the vascular endothelium due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated in the pathogenesis of the COVID-19 vasculopathy. Although initial reports suggested that endothelial injury was caused directly by the virus, recent studies indicate that endothelial cells do not express angiotensin-converting enzyme 2, the receptor that SARS-CoV-2 uses to gain entry into cells, or express it at low levels and are resistant to the infection. These new findings, together with the observation that COVID-19 triggers a cytokine storm capable of injuring the endothelium and disrupting its antithrombogenic properties, favor an indirect mechanism of endothelial injury mediated locally by an augmented inflammatory reaction to infected nonendothelial cells, such as the bronchial and alveolar epithelium, and systemically by the excessive immune response to infection. Herein we review the vascular pathology of COVID-19 and critically discuss the potential mechanisms of endothelial injury in this disease.


Assuntos
COVID-19/metabolismo , Síndrome da Liberação de Citocina/metabolismo , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , SARS-CoV-2/metabolismo , Trombose/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Brônquios/metabolismo , Brônquios/patologia , COVID-19/complicações , COVID-19/patologia , COVID-19/terapia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/terapia , Endotélio Vascular/patologia , Humanos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Trombose/etiologia , Trombose/patologia , Trombose/terapia
13.
Rheumatol Int ; 41(6): 1045-1053, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33830321

RESUMO

Microvascular dysfunction is one of the hallmarks of systemic sclerosis (SSc). The presence of pulmonary-arterial-hypertension (PAH) in SSc-patients is associated with poor prognosis. This is a systematic review and meta-analysis of studies assessing microvascular and endothelial injury with functional techniques in SSc-patients with PAH (SSc-PAH) compared to those without PAH (SSc-non-PAH) (PROSPERO: CRD42021236212). Literature search involved PubMed, the-Cochrane-Library, Web-of-Science, Scopus and manual search of article references. Studies assessing microvascular function by all available functional methods were considered eligible. Preclinical studies and studies using structural nailfold-videocapillaroscopy or biomarkers were excluded. Newcastle-Ottawa-Scale (NOS) was applied to evaluate the quality of retrieved studies. From a total of 602 retrieved articles, four studies (n = 159 participants) were included in meta-analysis; three studies were of high quality (NOS ≥ 7). In pooled analysis, a marginally significant impaired microvascular function was observed in SSc-PAH compared to SSc-non-PAH patients [SMD - 0.71, 95% CI (- 1.53, 0.12)], with significant between-study heterogeneity (I2 = 80%, p = 0.002). Among the studies examining endothelium-dependent and -independent vasodilation with LDF-iontophoresis, SSc-PAH subjects had significantly impaired endothelium-dependent-vasodilation [Ach-stimulated %change WMD - 216.79, 95% CI (- 337.87, - 95.71), I2 = 0%, p = 0.40], but no significant differences in endothelium-independent-vasodilation [SNP-stimulated %change WMD 90.84, 95% CI (- 82.52, 264.19), I2 = 44%, p = 0.18] compared with SSc-non-PAH subjects. In sensitivity analysis including only studies where SSc-PAH patients were diagnosed by right-heart-catheterization, a borderline difference between the two groups was noted [SMD - 1.09, 95% CI (- 2.30, 0.13), I2 = 82%, p = 0.004]. SSc-PAH patients showed marginally impaired microvascular function in the pooled analysis, as well as impaired endothelium-dependent-vasodilation in subgroup analysis compared with SSc-non-PAH patients. Vascular endothelial dysfunction could be involved in high cardiovascular risk of patients with SSc and PAH.


Assuntos
Endotélio Vascular/lesões , Hipertensão Arterial Pulmonar/etiologia , Escleroderma Sistêmico/complicações , Humanos , Microcirculação
14.
J Leukoc Biol ; 110(4): 651-661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464650

RESUMO

The objective of this study was to find the role of LncRNA SNHG12 in the regulation of hypertensive vascular endothelial injury. LncRNA SNHG12 and miR-25-3p expression were detected by quantitative RT-PCR. Protein levels of Sirtuin 6 (SIRT6), endothelial cell (EC) senescence markers p16 and p21, and EC marker CD31 were measured by Western blot. The apoptosis of HUVECs was detected by flow cytometry. The binding between LncRNA SNHG12 and miR-25-3p was verified by dual luciferase reporter gene assay and RNA pull-down assay. As a result, LncRNA SNHG12 was down-regulated in aortic primary ECs isolated from Ang II-induced hypertensive mice and 1 kidney/deoxycorticosterone acetate/salt-induced hypertensive mice. In Ang II-treated HUVECs, the expression level of SNHG12 was reduced and the overexpression of SNHG12 inhibited EC senescence markers p16 and p21 expressions, the apoptosis of HUVECs, and caspase-3 activity. Further investigation confirmed that LncRNA SNHG12 bound to miR-25-3p, and negatively regulated miR-25-3p expression. MiR-25-3p directly targeted SIRT6 and negatively regulated SIRT6 expression. In addition, SNHG12 overexpression inhibited Ang II-induced HUVECs injury through regulating miR-25-3p. Finally, in vivo experiments showed LncRNA SNHG12 overexpression alleviated vascular endothelial injury in Ang II-induced hypertensive mice. In conclusion, LncRNA SNHG12 alleviates vascular endothelial injury induced by hypertension through miR-25-3p/SIRT6 pathway.


Assuntos
Endotélio Vascular/lesões , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipertensão/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Sirtuínas/metabolismo , Angiotensina II , Animais , Sequência de Bases , Regulação para Baixo/genética , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Sirtuínas/genética
15.
Shock ; 56(4): 601-610, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394971

RESUMO

BACKGROUND: Aeromedical evacuation can expose traumatically injured patients to low pressure (hypobaria) and hypoxia. Here, we sought to assess the impact of hypobaria on inflammation, organ injury, and mortality in a mouse model of polytrauma. METHODS: Eight to 12-week-old male C57BL/6J mice were subjected to sham or polytrauma consisting of bowel ischemia by superior mesenteric artery occlusion, hindlimb muscle crush, and tibia fracture. Two hours after injury, animals were randomized to undergo either 6 h of hypobaria or sea-level, room air conditions. At 8 or 24 h after injury, transthoracic echocardiography was performed. Acute kidney injury (AKI) biomarkers were measured by qRT-PCR. Plasma cytokine and endothelial injury markers were determined by enzyme-linked immunosorbent assay. RESULTS: Eight hours after traumatic injury, mice exhibited a marked increase in plasma IL-6 (57 pg/mL vs. 1,216 pg/mL), AKI with increased Ngal and Kim-1, and endothelial injury as evidenced by significantly increased plasma hyaluronic acid (96 ng/mL vs.199 ng/mL), thrombomodulin (23.2 ng/mL vs. 58.9 ng/mL), syndecan-1 (0.99 ng/mL vs. 4.34 ng/mL), and E-selectin (38.6 ng/mL vs. 62.7 ng/mL). The trauma mice also developed cardiac dysfunction with decreased cardiac output and stroke volume at 8 h postinjury. Hypobaric exposure after polytrauma led to decreased ejection fraction (81.0% vs. 74.2%, P < 0.01) and increased plasma hyaluronic acid (199 ng/mL vs. 260 ng/mL, P < 0.05), thrombomodulin (58.9 ng/mL vs. 75.4 ng/mL, P < 0.05), and syndecan-1 (4.34 ng/mL vs. 8.33 ng/mL, P < 0.001) at 8 h postinjury. CONCLUSIONS: Hypobaria exposure appeared to worsen cardiac dysfunction and endothelial injury following polytrauma and thus may represent a physiological "second hit" following traumatic injury.


Assuntos
Injúria Renal Aguda/etiologia , Resgate Aéreo , Pressão do Ar , Endotélio Vascular/lesões , Traumatismo Múltiplo/complicações , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo Múltiplo/terapia
16.
Med Hypotheses ; 146: 110371, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33223324

RESUMO

The universal phenomenon of blood clotting is well known to be protective in external cellular/ tissue injury. However, the emergence of unusual thrombotic presentations in COVID-19 patients is the real concern. Interaction of the spike glycoprotein with ACE2 receptor present in the host cell surface mediates the entry of SARS-CoV-2 causing COVID-19 infection. New clinical findings of SARS-CoV-2 pathogenesis are coming out every day, and one such mystery is the formation of mysterious blood clots in the various tissues and organs of COVID-19 patients, which needs critical attention. To address this issue, we hypothesis that, high ACE2 expression in the endothelium of blood vessels facilitates the high-affinity binding of SARS-CoV-2 using spike protein, causing infection and internal injury inside the vascular wall of blood vessels. This viral associated injury may directly/indirectly initiate activation of coagulation and clotting cascades forming internal blood clots. However, the presence of these clots is undesirable as they are responsible for thrombosis and need to be treated with anti-thrombotic intervention.


Assuntos
COVID-19/complicações , Modelos Cardiovasculares , Pandemias , SARS-CoV-2 , Trombose/etiologia , Enzima de Conversão de Angiotensina 2/fisiologia , Coagulação Sanguínea/fisiologia , COVID-19/fisiopatologia , COVID-19/virologia , Endotélio Vascular/lesões , Endotélio Vascular/fisiopatologia , Endotélio Vascular/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Receptores Virais/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Trombose/fisiopatologia , Trombose/virologia
17.
Am J Pathol ; 191(1): 52-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069720

RESUMO

Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between the circulation and surrounding tissues and for preventing the development of vascular disease. Despite comprehensive understanding of the molecular mechanisms and signaling pathways that mediate endothelial injury, the regulatory mechanisms responsible for endothelial regeneration and vascular repair are incompletely understood and constitute an emerging area of research. Endogenous and exogenous reparative mechanisms serve to reverse vascular damage and restore endothelial barrier function through regeneration of a functional endothelium and re-engagement of endothelial junctions. In this review, mechanisms that contribute to endothelial regeneration and vascular repair are described. Targeting these mechanisms has the potential to improve outcome in diseases that are characterized by vascular injury, such as atherosclerosis, restenosis, peripheral vascular disease, sepsis, and acute respiratory distress syndrome. Future studies to further improve current understanding of the mechanisms that control endothelial regeneration and vascular repair are also highlighted.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Regeneração/fisiologia , Medicina Regenerativa , Animais , Endotélio Vascular/lesões , Humanos
18.
J Neurointerv Surg ; 13(6): 563-567, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32859747

RESUMO

BACKGROUND: Acute ischemic stroke can be caused by in situ stenotic vessel occlusion. In the present study, we compared the extent of arterial wall damage and miRNA expression following stent retriever use under normal and stenotic conditions. METHODS: The stent retriever procedure was simulated in three dogs by the creation of four stenoses on each side of the common carotid artery (CCA) to allow five stent passages. Device safety was also assessed in normal control models by five passages through both CCAs. Device manipulation-related damage to the arterial walls was evaluated and compared between groups by angiography and pathological analysis. Real-time PCR was used to evaluate the differences in the expression of miRNAs between the two groups. RESULTS: Twenty-four stenoses were created in three model dogs, and the mean stenosis rate was 65.58%±18.95%. Angiography revealed greater vasospasm in the stenotic group than in the non-stenotic group (1.17±0.17 vs 0.5±0.23; P=0.04). Pathological examination revealed that SR passage through the stenotic lumen caused higher injury scores (1.63±0.19 vs 0.25±0.09 for the non-stenotic lumen; P<0.001), more endothelial denudation (1.79±0.13 vs 0.58±0.13 for the non-stenotic lumen; P<0.001), and increased thrombus deposition (0.71±0.14 vs 0±0 for the non-stenotic lumen; P<0.001). miR21-3p, miR29-3p, and miR26a were upregulated in stenotic vessels compared with non-stenotic vessels after SR thrombectomy (P<0.001). CONCLUSION: In our model dogs, SR thrombectomy resulted in more severe tissue damage to the arterial wall under stenotic conditions than under non-stenotic conditions. The damage may have resulted from upregulation of miR21-3p, miR29-3p, and miR26a expression.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Estenose das Carótidas/metabolismo , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , MicroRNAs/biossíntese , Trombectomia/efeitos adversos , Angiografia/métodos , Animais , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/genética , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/cirurgia , Estenose das Carótidas/genética , Estenose das Carótidas/cirurgia , Modelos Animais de Doenças , Cães , MicroRNAs/genética , Stents , Trombectomia/tendências , Resultado do Tratamento
19.
Med Hypotheses ; 146: 110455, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341032

RESUMO

SARS-CoV-2 infection generally begins in the respiratory tract where it can cause bilateral pneumonia. The disease can evolve into acute respiratory distress syndrome and multi-organ failure, due to viral spread in the blood and an excessive inflammatory reaction including cytokine storm. Antiviral and anti-cytokine drugs have proven to be poorly or in-effective in stopping disease progression, and mortality or serious chronic damage is common in severely ill cases. The low efficacy of antiviral drugs is probably due to late administration, when the virus has triggered the inflammatory reaction and is no longer the main protagonist. The relatively poor efficacy of anti-cytokine drugs is explained by the fact that they act on one or a few of the dozens of cytokines involved, and because other mediators of inflammation - reactive oxygen and nitrogen species - are not targeted. When produced in excess, reactive species cause extensive cell and tissue damage. The only drug known to inhibit the excessive production of reactive species and cytokines is methylene blue, a low-cost dye with antiseptic properties used effectively to treat malaria, urinary tract infections, septic shock, and methaemoglobinaemia. We propose testing methylene blue to contrast Covid-related acute respiratory distress syndrome, but particularly suggest testing it early in Covid infections to prevent the hyper-inflammatory reaction responsible for the serious complications of the disease.


Assuntos
Tratamento Farmacológico da COVID-19 , Azul de Metileno/farmacologia , Modelos Biológicos , Antivirais/farmacologia , COVID-19/complicações , COVID-19/fisiopatologia , Citocinas/antagonistas & inibidores , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/lesões , Humanos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Pandemias , Espécies Reativas de Oxigênio/antagonistas & inibidores , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/prevenção & controle , SARS-CoV-2 , Falha de Tratamento
20.
IUBMB Life ; 73(1): 177-187, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249762

RESUMO

Circular RNAs (circRNAs) are a group of RNAs featured by a covalently closed continuous loop structure. This study aimed to uncover the function and mechanism of circ-ubiquitin specific peptidase 36 (USP36) in endothelial cells treated with oxidized low-density lipoprotein (ox-LDL). The levels of circ-USP36, microRNA-98-5p (miR-98-5p) and vascular cell adhesion molecule 1 (VCAM1) were examined by a quantitative real-time polymerase chain reaction (qRT-PCR). The viability, apoptosis and inflammation were detected by (4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Western blot assay was performed to detect the expression of apoptosis and proliferation-related markers and VCAM1 protein level. The targets of circ-USP36 and miR-98-5p were searched using starBase website, and dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to validate the above predictions. Ox-LDL exposure induced the upregulation of circ-USP36 in HUVEC cells. Circ-USP36 accelerated ox-LDL-induced apoptosis, inflammatory and viability inhibition of HUVEC cells. MiR-98-5p was a direct downstream gene of circ-USP36. Circ-USP36 promoted the injury of ox-LDL-induced HUVEC cells through targeting miR-98-5p. VCAM1 could bind to miR-98-5p, and the protective effects of miR-98-5p accumulation on ox-LDL-induced HUVEC cells were reversed by the transfection of VCAM1. VCAM1 was regulated by circ-USP36/miR-98-5p signaling in HUVEC cells. Ox-LDL promoted the apoptosis and inflammation but suppressed the viability of HUVEC cells through upregulating circ-USP36, thus elevating the expression of VCAM1 via miR-98-5p.


Assuntos
Endotélio Vascular/patologia , Inflamação/patologia , Lipoproteínas LDL/efeitos adversos , MicroRNAs/genética , RNA Circular/genética , Ubiquitina Tiolesterase/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Apoptose , Proliferação de Células , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/lesões , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...